RECRUITMENT AND DECRUITMENT OF MOTOR UNITS ACTIVITIES OF

M. BICEPS BRACHII DURING ISOVELOCITY MOVEMENTS

Ryuhei Okuno and Kenzo Akazawa
Department of Information Systems Engineering, Graduate School of Engineering, Osaka University,
Japan

Abstract— The purpose of this study is to investigate be-
haviors of motor units of m. biceps brachii (biceps short
head muscle) during flexion movements in wide range of
elbow joint angle. In this study, eight surface electromyo-
grams(EMGs) were measured during flexion movements at
constant angular velocity (isovelocity) and against constant
torque in wide range (from 0 [deg] to 120 [deg]) of elbow
joint angle with a surface electrode array. We identified ac-
tion potensials of each moitor unit and detected recruitment
and decruitment of the identified motor units. We found 42
recruitments and 38 decruitments of the motor units in 42
experimental sessions, 6 subjects.

Keywords— motor unit, electromyogram, biceps brachii,
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I. INTRODUCTION

Behaviors of motor units (MUs) at the isometric con-
traction of various muscles have been extensively studied
on human subjects by many researchers. It has been found
that during static muscle contractions graded force devel-
opment is achieved by a rank-orderd increase in the number
of active MUs in combination with an increase in the firing
rate of already recruited units [1}-[3].

Contrary to the wealth of experimental data on isometric
contraction, some studies have been reported on voluntary
movements[4]-[10]. In these studies, comparison of isomet-
ric and anisometric contractions have shown that during
length changes muscle force variation relies more on MU
recruitment than rate cording [4]-[6]. In most of these pre-
vious studies, they measured the MU activities in a rela-
tively narrow range of joint angle, because MU action po-
tentials (MUAPSs) were recorded with wire or needle elec-
trodes. Measuring of MU activities during movement in
wide range of joint angle is needed to reveal the human po-
sition control mechanism. Bolhuis et al. measured MUAPs
in brachialis and biceps brachii muscles during sinusoidal
flexion/extension movements (peak-peak amplitude of el-
bow joint angle about 30 [deg] )[9]. They showed that the
relationship between the mean phase lead of the bursts of
MUAPs and sinusoidal movements. Some basic character-
istics of motor unit activities have not been made clear yet.

The purpose of this study is to investigate behaviors of
MUs of m. biceps brachii (biceps short head muscle) dur-
ing flexion movements in wide range of elbow joint angle.
In this study, eight surface electromyograms (EMGs) were
measured during flexion movements at constant angular ve-
locity (isovelocity) and against constant load. The MUAPs
were identified by decomposition technique and firing time
of each MUs was investigated.

II. METHOD

The experimental task was isovelocity flexing of the el-
bow joint in a horizontal plane. A schematic diagram of
the experimental setup is shown in Figure 1(B). The experi-
ments were performed with three healthy subjects who had
given informed consent. Each subject sat on a chair and his
body was strapped to the chair with nylon belts. His fore-
arm was supported with a wooden plate and a Styrofoam
piece which were settled on a freely rotating acrylic plate.
He could flex and extend his elbow joint in the horizontal
plane at the height of his shoulder. To extend the elbow
joint, his wrist was pulled by the gravitational force of a
weight hung from a pulley. The subject’s elbow joint angle
and the target angle were displayed as thin and thick bright
lines, respectively, on the screen of an oscilloscope in front
of him. He was instructed to flex his elbow joint at a con-
stant velocity by tracking the bright line. He was also asked
to minimize coactivation of the antagonist muscles. While
the subject was flexing his elbow from 0 to 120 [deg], the
EMG signals, elbow joint angle and torque were measured.
The elbow joint angle was measured with a potentiometer.
The force applied to the forearm was measured with a load
cell. The elbow joint torque was calculated from radius
of the acrylic plate and the force applied to the forearm.
External loads corresponded to 5 and 7[%MVC] (Subject
A B,C) and 10[%MVC] (Subject D,E,F). The flexion angu-
lar velocities were 10[deg/s] (Subject A), 15[deg/s](Subject
B,C) and 10,15,20,25 [deg/s] (Subject D,E,F). Measure-
ments with Subject A, B and C were performed five times
and Measurements with Subject D, E and F were per-
formed once about each condition respectively

EMG signals were obtained with eight-channel bipolar
surface electrode array (Figure 1(A)). The electrode array
was consisted of sixteen stainless electrodes of 1mm di-
ameter. EMG signals were measured differentially with a
pair of two electrodes placed with inter-electrode spacing of
2.54mm. The eight pair of electrodes are placed in parallel
with spacing 2.54mm.

We classified the MUAPs based on the waveform of eight
EMGs; the classification was performed interactively on the
CRT monitor with an aid of template matching, which was
similar to the decomposition algorithm by Mambrito and
DeLuca [11] (Figure 2). Subsequently, firing time of each
MUs was investigated on all classified MUs.
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direction of muscle fiber

(A)
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Fig. 1. Schematic drawing of experimental setup; (A) sixteen poles
(eight channels) electrode array. (B) experimental setup for isove-
locity flexion movement.
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Fig. 2. Screen shot of identification and decomposition of MUs pro-
gram. waveforms of MUAPs and template were displayed.

III. RESULTS

Figure 3 shows a typical measured elbow torque, elbow
joint angle and EMGs. In Figure 3(A), the subject started
to flex his elbow joint at the time of approximately 1 [s]
after the recording. The torque around elbow joint angle
and the angular velocity are almost constant during flexion
movement.

Figure 3(B) shows EMGs obtained with the eight-
channel electrode array. CH1 is the EMGs measured with
a pair of bipolar electrodes (chl) of the electrode array. In
Figure 3(B) CH1, it is shown that MUAPs were started to
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Fig. 3. Typical measured elbow joint angle, torque around elbow

joint and eight EMGs obtained with the electrode array. (A) el-
bow joint angle and torque around elbow joint, (B)eight-channels
EMGs. Subject A, load 7 [%AMVC], angular velocity 10 [deg/s]
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Fig. 4. Measured elbow joint angle and firing time of each identified
MUs. Subject A, load 7 [%MVC], angular velocity 10 [deg/s]

record at the time of approximately 6 [s]. These MUAPs
trains moved from CH1 to CH5 and waveforms of the MUs
were changed gradually. Because relative distance between
the MUs and electrode array changed during flexion move-
ments.

Figure 4 shows the measured elbow torque, elbow joint
angle and firing time of each identified MUs. A vertical
stick in the Figure 4 is the firing time of each MU. The each
MU was numbered consecutively from MU#1 to MU#S8 in
order of identification.

In Figure 4, firing of MU#4 was started to recorded at
the time of approximately 2 [s]. MU#4 was being moved
from the outside of the measuring range of the electrode
to the inside. The recruited time of MU#4 could not been
observed clearly. So, we could not regard MU#4 as recruit-
ment of MU. The recruited time of the other MUs except
MU#8 could not been observed clearly too.

Figure 5 shows that the measured EMGs at the time of
R1. At the time of 7.42 [ms] firing of MU#8 was started to
record in the center of the electrode array, CH4, CH5 and



CHS6. It was not seemed that MU#8 moved from outside of
range measuring with the electrode array to inside of one.
We regarded MU#8 as a recruited MU.

In Figure 4, firing of MU#4 stopped at the time of ap-
proximately 4.7 [ms] during flexion movement. Figure 6
shows that the measured EMGs at the time of D1. The
recorded MUAPs train of MU#4 stopped to record at the
time of 4.72[ms]. We regarded MU#4 as a decruited MU.
MU#2 were decruited at the alomost same time (see D2 in
Figure 4). However, the other MUs were being moved from
the inside of the measuring range of the electrode to the
outside or Waveform of the MUAPSs were superimposed on
others, the time that the MUs decruited could not obtained
clearly. Figure 7 shows decruitment of MU in the another
experiment with other subject. Decruitments of MUs were
founds in other subjects.

Table 1 and Table 2 shows the total number of recruit-
ment and decruitment of MUs observed from each subject
in this study. In Table 1, the total number of experimental
sessions with Subject A were ten times. In these exper-
iments, the number of recruited MUs was found ten and
the number of decruited MUs was four. In Table 2, the to-
tal number of experiments with Subject D were four. The
number of recruited MUs was found one and the number
of decruited MUs was sixteen.

TABLE 1
THE NUMBER OF RECRUITMENT AND DECRUITMENT (SUBJECT 1A7 ]37
Q).
| Subject | load[%MVC] [[5 |7 |

A recruitment 4 6

10[deg/s] | decruitment || 2 | 2

B recruit 2 2

15[deg/s] | derecruit 2 |4

C recruit 10 | 12

15[deg/s] | derecruit 5 |7

TABLE II
THE NUMBER OF RECRUITMENT AND DECRUITMENT (SUBJECT D, E,
F).
| Subject | speed[deg/s] || 10 [ 15 [ 20 | 25 |

D recruit 1 0 0 0
10[%MVC] | derecruit 3 12 [3 |3
E recruit 1 0 0 0
10[%MVC] | derecruit 3 /1 |1 |0
F recruit 1 1 1 1
15[%MVC] | derecruit 0 [0 [0 O

IV. DISCUSSIONS

Recruitments of MUs during movements were investi-
gated by many researchers, however, there were few reports
on decruitments of MUs. Kato et al reported decruitment
of MUs of human tibialis anterior muscle after finishing

of flexion movements. In this study, decruitments of MUs
were found during flexion movements.

Decruitments of MUs could not be found in every ex-
perimental sessions. Because we regarded MUs that we
could obtain clearly last firing time of one as decruited
MUs. To investigate basic characteristics of motor unit
activities, for examples, relationship between recruitment
and decruitment of MUs and elbow joint angle, we have
to develop program with new methods (wavelet transform,
time-frequency analysis and so on) for decomposition of
MUAPs.

V. CONCLUSIONS

Recruitment and Decruitment of MUs of biceps short
head muscle were investigated during flexion movements
in wide range of elbow joint angle.

Eight surface electromyograms(EMGs) were measured
during flexion movements at constant angular velocity and
against constant torque in wide range (from 0 [deg] to 120
[deg]) of elbow joint angle. We identified each MUAPs,
and detected recruitment and decruitment of each MUs.
We identified 42 recruitments and 38 decruitments with 42
experimental sessions.
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